
Evaluating the Effectiveness of LLMs in Introductory Computer
Science Education: A Semester-Long Field Study

Wenhan Lyu
William & Mary

Williamsburg, VA, USA
wlyu@wm.edu

Yimeng Wang
William & Mary

Williamsburg, VA, USA
ywang139@wm.edu

Tingting (Rachel) Chung
William & Mary

Williamsburg, VA, USA
rachel.chung@mason.wm.edu

Yifan Sun
William & Mary

Williamsburg, VA, USA
ysun25@wm.edu

Yixuan Zhang
William & Mary

Williamsburg, VA, USA
yzhang104@wm.edu

ABSTRACT
The integration of AI assistants, especially through the development
of Large Language Models (LLMs), into computer science education
has sparked significant debate, highlighting both their potential to
augment student learning and the risks associated with their misuse.
An emerging body of work has looked into using LLMs in education,
primarily focusing on evaluating the performance of existing mod-
els or conducting short-term human subject studies. However, very
little work has examined the impacts of LLM-powered assistants
on students in entry-level programming courses, particularly in
real-world contexts and over extended periods. To address this re-
search gap, we conducted a semester-long, between-subjects study
with 50 students using CodeTutor, an LLM-powered assistant de-
veloped by our research team. Our study results show that students
who used CodeTutor (the “CodeTutor group” as the experimental
group) achieved statistically significant improvements in their final
scores compared to peers who did not use the tool (the “control
group”). Within the CodeTutor group, those without prior experi-
ence with LLM-powered tools demonstrated significantly greater
performance gain than their counterparts. We also found that stu-
dents expressed positive feedback regarding CodeTutor’s capability
to comprehend their queries and assist in learning programming
language syntax. However, they had concerns about CodeTutor’s
limited role in developing critical thinking skills. Over the course
of the semester, students’ agreement with CodeTutor’s suggestions
decreased, with a growing preference for support from traditional
human teaching assistants. Our findings also show that students
turned to CodeTutor for different tasks, including programming
task completion, syntax comprehension, and debugging, partic-
ularly seeking help for programming assignments. Our analysis
further reveals that the quality of user prompts was significantly
correlated with CodeTutor’s response effectiveness. Building upon
these results, we discuss the implications of our findings for the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
L@S ’24, July 18–20, 2024, Atlanta, Georgia, GA, USA
© 2024 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

need to integrate Generative AI literacy into curricula to foster crit-
ical thinking skills, and turn to examining the temporal dynamics
of user engagement with LLM-powered tools. We further discuss
the discrepancy between the anticipated functions of tools and stu-
dents’ actual capabilities, which sheds light on the need for tailored
strategies to improve educational outcomes.

CCS CONCEPTS
• Human-centered computing→ Human computer interac-
tion (HCI).

KEYWORDS
Field study, Large Language Models, Tutoring

ACM Reference Format:
Wenhan Lyu, YimengWang, Tingting (Rachel) Chung, Yifan Sun, and Yixuan
Zhang. 2024. Evaluating the Effectiveness of LLMs in Introductory Computer
Science Education: A Semester-Long Field Study. In L@S’24:In Proceedings
of the Tenth ACM Conference on Learning @ Scale, July 18–20, 2024, Atlanta,
Georgia, GA, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/
XXXXXXX.XXXXXXX

1 INTRODUCTION
Recent advancements in Generative AI and Large Language Mod-
els (LLMs), exemplified by GitHub Copilot [15] and ChatGPT [32],
have demonstrated their capacity to tackle complex problems with
human-like proficiency. These innovations raise significant con-
cerns within the educational domain, particularly as students might
misuse these tools, thereby compromising the quality of education
and breaching academic integrity norms [36]. Specifically, entry-
level computer science education is directly affected by the progress
in LLMs [58]. LLMs’ capability in handling programming tasks
means they can complete many assignments typically given in in-
troductory courses, thus becoming highly appealing to students
looking for easy solutions.

Despite these challenges, LLM-powered tools offer great oppor-
tunities to enrich computer science education [23]. When used
ethically and appropriately, they can serve as powerful educational
resources. For instance, LLMs can provide students instant feedback
on their coding assignments or generate diverse examples of code
that help demonstrate programming concepts [35]. Moreover, as
Generative AIs are becoming popular in production environments,

https://orcid.org/0009-0004-9129-8689
https://orcid.org/0009-0005-0699-4581
https://orcid.org/0000-0002-0250-4873
https://orcid.org/0000-0003-3532-6521
https://orcid.org/0000-0002-7412-4669
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

L@S ’24, July 18–20, 2024, Atlanta, Georgia, GA, USA Lyu et al.

familiarizing students with these technologies is increasingly be-
coming a crucial aspect of computer science education.

The unique challenges posed by LLMs stem from the difficulty in
detecting the use of AI tools [54, 57]. Traditional approaches, such
as plagiarism detection software, fall short in determining the origi-
nality of student submissions [28]. Given the challenges in identify-
ing LLMs usage and recognizing the potential advantages of these
technologies, we consider integrating LLMs into computer science
education inevitable. As students have already started using such
tools, the impact of LLMs on computer science education remains
unknown. Indeed, a growing body of research has begun to explore
the application of LLMs within educational settings, primarily fo-
cusing on assessing the capabilities of current models with existing
datasets or previous assignments from students [18, 27]. However,
there is still a research gap in understanding how students interact
with LLM-powered tools in introductory programming classes, par-
ticularly regarding their engagement in genuine learning settings
over extended periods. Furthermore, while previous studies have
shown individual differences in intelligent tutoring systems [22],
research into how these differences apply to LLM tools is lacking.
Investigating these variations is important for tailoring educational
strategies to diverse student needs. In short, understanding these
nuanced attitudes of and interactions with LLM-powered tools in
CS education over extended periods is crucial for identifying the
evolving challenges and opportunities LLMs introduce.

To address the research gap, we asked the following research
questions (RQs) in this work:
RQ1. Does the integration of LLM-powered tools in introductory
programming courses enhance or impair students’ learning out-
comes, compared to traditional teaching methods? How are individ-
ual differences associated with students’ learning outcomes using
LLM-powered tools?
RQ2. What are students’ attitudes towards LLM-powered tools,
how do they change over time, and which factors might influence
these attitudes?
RQ3. How do students engage with LLM-powered tools, and how
do they respond to their programming needs?

We believe that addressing the following research questions
(RQs) is critical for enabling researchers to make informed deci-
sions about incorporating LLMs into their courses and guiding
students on the optimal and responsible use of LLM-powered tools.
To answer the questions, we conducted a longitudinal, between-
subject field study with 50 students over the course of the fall
semester from September to December 2023 with a web-based tool
we developed called CodeTutor.

The contributions of this work are: 1)We conducted a semester-
long longitudinal field study to assess the effectiveness of an LLM-
powered tool (CodeTutor) on students’ learning outcomes in an
introductory programming course. By comparing the performance
of students who used CodeTutor against those who did not, our
study contributes to new empirical evidence regarding the role of
LLM-powered tools in the programming learning experience; 2)We
characterized patterns of student engagement with CodeTutor and
analyzed the ways in which it can meet students’ learning needs.
Through the analysis of conversational interactions and feedback
loops between students and the tool, we contributed new knowl-
edge regarding how CodeTutor facilitates or impedes learning; and

3)We offered insights and outlined design implications for future
research.

2 RELATEDWORK
2.1 Intelligent Tutoring Systems
Using computerized tools for assisting educational purposes is not
a new idea. As early as the 1950s, the first concept of using com-
puters to assist learning has already emerged [29]. From where
the factor of intelligence had been considered and it had started
evolving into Intelligent Tutoring Systems (ITS) [46]. ITS leverages
artificial intelligence to provide personalized learning experiences
in computer science education, adapting instruction and feedback
to individual student needs [3, 14]. These systems have enhanced
student engagement, comprehension, and problem-solving skills
by offering tailored support and immediate feedback, similar to
one-on-one tutoring [10, 52]. Research has demonstrated that ITS
can significantly improve understanding of complex concepts in
programming courses compared to traditional teaching methods,
leading to higher student satisfaction due to the personalized learn-
ing environment [9, 42]. The Internet also empowered ITS to offer
more interactivity and adaptivity [5–7], leveraging the path of later
boost with natural language processing techniques [13, 19].

However, prior work has shown that as the granularity of tutor-
ing decreases, its effectiveness increases [52]. Significant limitations
for ITS include the complexity and cost of building them, the in-
capability to answer questions and tasks out of their programmed
domains, and the difficulty to develop with the purpose of pro-
ductively used by individuals without expertise [16]. Even though
the Generalized Intelligent Framework for Tutoring (GIFT) frame-
work [47] was proposed and evolved for developing ITS for use at
scale, those limitations mostly remain unresolved.

2.2 Large Language Models in CS Education
The release of ChatGPT and other Generative AI applications brought
LLMs into the public view and attracted enormous attention [1, 48].
LLMs offer researchers and users the flexibility to employ a single
tool across various tasks [53], such as medical research [8, 49], fi-
nance [55], and education [21]. Adopting LLM-powered tools in
educational settings is facilitated by their broad accessibility and
cost-free nature [56]. Recent studies have looked into the potential
of AI assistants to enhance student learning by helping with stu-
dents’ problem-solving [2, 25, 37] and generating computer science
content [11, 43]. Current research on the use of LLMs in education
has primarily looked into their performance and capabilities [40]
compared to humans, such as generating code for programming
tasks [24, 39], answering general inquriries [38, 44], addressing
textbook questions [20] and exam questions [12].

Despite the growing interest in examining the capabilities of
LLMs in education, very few empirical studies have examined the
emerging concerns regarding their impact. Therefore, there is an
urgent need for research into the long-term effects of LLMs in CS
education and the development of strategies to counteract potential
negative consequences. One exceptional work was conducted by
Liffiton et al. [26], who developed a tool called CodeHelp for assist-
ing students with their debug needs in an undergraduate course

Evaluating the Effectiveness of LLMs in Introductory Computer Science Education: A Semester-Long Field Study L@S ’24, July 18–20, 2024, Atlanta, Georgia, GA, USA

over 12 weeks. Their follow-up study [45] categorized history mes-
sages in their tool, and found a positive relationship between tool
usage and course performance. However, their study specifically
focused on debugging issues and did not compare the outcomes
with those achieved through traditional TA methods.

Furthermore, prior research has demonstrated that individual
differences, such as gender, race, and prior experiences with tech-
nologies, significantly influence the effectiveness of traditional in-
telligent tutoring systems [22]. However, work that examines how
these individual differences affect interactions with and percep-
tions of LLM-powered tools in educational settings is sparse. Given
the increasing integration of LLMs in programming courses and
beyond, understanding the role of demographic and individual vari-
ability is crucial for developing inclusive and effective educational
tools that suit diverse students’ needs.

Our work seeks to address these research gaps by conducting
a field study that evaluates the use of LLM-powered tools for an
extended period of time. Particularly, our study not only aims to
evaluate the practicality of LLMs in programming learning educa-
tional contexts, but also intends to contribute to a more nuanced
understanding of their long-term implications for learning and
teaching methodologies.

3 METHOD
In this section, we describe the design of CodeTutor (subsection 3.1),
an overview of our participants (subsection 3.2), our study proce-
dure and data collection (subsection 3.3), and our quantitative and
qualitative data analysis (subsection 3.4). The source code of Code-
Tutor, pre-test questions, and data analysis code is available on
osf.io/e3zgh.

3.1 Design of CodeTutor
We developed CodeTutor, a browser-based web application using
TypeScript and front-end frameworks (e.g., SolidJS, Astro, and li-
braries such as Zag), for a responsive and interactive user interface.
CodeTutor integrates OpenAPI API, which enables the GPT-3.5
model offered by OpenAI. The main interface is shown in Figure 1.
Login. Students log in to CodeTutor using their email addresses,
with a randomly generated unique identifier (UID) that tracks their
activities anonymously.
User Interface. The CodeTutor interface features a navigation
sidebar and a central chat area. The sidebar enables easy navigation,
with a button for starting new conversations and a chronological
listing of existing ones for quick access.
User Feedback Structure. Feedback is important in CodeTu-
tor in order to understand user engagement and students’ atti-
tudes towards it. CodeTutor provides two feedback mechanisms: 1)
conversation-level and 2) message-level feedback.
Data Storage. CodeTutor stores data locally on the user’s browser
with IndexedDB and can only upload essential information with
our secure server for research purposes, where a unique ID for
anonymous tracking identifies each conversation. To protect pri-
vacy, CodeTutor cannot read stored data from our server.
API Usage. OpenAI only offered limited configuration ability for
their API at the time we started our experiment. So we carefully
crafted the system role text in our implementation to specify the

model to answer questions as a teaching assistant in an entry-level
Python class, making answers from OpenAI API consistent even if
the length of a conversation exceeds its token limit.

3.2 Participants
Upon approval from our institution’s Institutional Review Board
(IRB), we conducted a field study evaluation study with 50 par-
ticipants. The field study took place in the Computer Science De-
partment of a 4-year university in the United States. Our criteria
for participation include: Participants need to be 18 years or older,
be able to speak and write in English, and register as entry-level
undergraduate computer science students at our institution. Table 1
presents an overview of our participants’ demographic information.

Table 1: Overview of Participant Characteristics

Characteristics Options Number of
participants

Gender Man 25
Woman 22
Non-binary 1
Prefer not to say 2

Major Computer Science 18
Data Science 9
Biology 5
Mathematics 4
Economics 3
Others 10
Not reported 1

Year of Study Freshman 37
Junior 6
Sophomore 5
Senior 1
Not reported 1

Race White 26
Asian 17
Multiracial 3
African American or Black 1
Not reported 3

Ethnicity Latino/Hispanic 3

Prior Experience Only ChatGPT 28
with LLM tools ChatGPT and other tools 11

Never used 11

3.3 Study Procedure & Data Collection
Our field study lasted from September 27 (after the course add-
drop period) to December 11, 2023 (the final exam due). Below, we
describe each component of our study.

3.3.1 Pre-test. Participants were initially requested to provide their
consent to participate, with being informed about the study’s ob-
jectives, procedures, and their rights as participants, including the
right to withdraw at any time without penalty. Following the con-
sent process, the pre-test assessment was administered to evaluate
students’ existing knowledge of Python programming, providing a
baseline for subsequent analysis.

This pre-test included three sections with Python questions,
with a total of 22 questions that varied in difficulty for an evalua-
tion of participant skills. The first section featured eight questions
(Questions 1-8, for example, “What is the output of the following

https://osf.io/e3zgh

L@S ’24, July 18–20, 2024, Atlanta, Georgia, GA, USA Lyu et al.

Main Conversation Conversation History 1 2

3

4 Message-level feedback

Conversation-level feedback

Comprehension

Critical Thinking

Syntax Mastery

Independent Learning

TA Replacement

Conversation-level feedback mode triggers when
1) users are inactive for 10 minutes, or
2) users end the conversation; or
3) users click on the providing feedback button

Light/ Dark
mode

Delete
messages

Message-level feedback mode triggers when
users click on the upvote or downvote

Figure 1: CodeTutor is a web application that leverages OpenAI API, featuring four main components: 1 Conversation
History that lists different conversation threads, 2 Main Conversation that shows an ongoing dialogue with CodeTutor, 3
Conversation-level Feedback module that allows users to elaborate on their attitudes towards CodeTutor by proving ratings on
1) comprehension, 2) critical thinking, 3) syntax mastery, 4) independent learning, and 5) TA replacement likelihood, and to
provide specific comments, and 4 Message-level Feedback that offers options for users to give detailed feedback on individual
messages or responses from CodeTutor.

code: print(3+4)?”), the second section included seven questions
of medium difficulty (Questions 9-15, for example, “If I wanted a
function to return the product of two numbers a and b, what should
the return statement look like?”), and the third section presented
seven challenging questions (Questions 16-22, for example, “What
will be the output of the following code? [Multiple lines of code]”).
The total score of the three sections was 100 points. Pre-test sub-
missions were graded by our researchers with Computer Science
backgrounds, using predetermined scoring criteria.

This pre-test also asked about participants’ prior experience
with LLMs, specifically asking, “Which of the following Large Lan-
guage Model AI tools have you used before? Please select all that
apply.” Participants were also asked to provide demographic in-
formation, including their major (or intended major), gender, and
race/ethnicity. Participants were assured that all demographic infor-
mation would remain anonymous and be used solely for research
purposes.

3.3.2 Control vs. Experimental Group. Participants were divided
into two groups: the control group, which used traditional learning
methods and had access to human teaching assistants (TAs) for
additional support outside class hours, and the experimental group,
which used CodeTutor as their primary educational tool beyond
class hours, alongside access to standard learning materials and

human TAs. Using LLM-based tools other than CodeTutor in this
course was prohibited.

To divide participants into a control group and an experimental
group, we initially sorted the entire sample based on their previ-
ous engagement with LLM-powered tools, resulting in two groups:
those who have used any LLM-powered tools before (Used Before)
and those who have not (Never Used). Within the Used Before cate-
gory, we split the participants into two subsets, Used Before Subset
A and Used Before Subset B, based on the overall pre-test result
distribution to ensure both subsets are representative of the wider
group. The same process was applied to the Never Used group, gen-
erating two additional subsets: Never Used Subset A and Never Used
Subset B. The experimental group is then formed by combining
Used Before Subset A with Never Used Subset A, while the control
group consists of the combination of Used Before Subset B and Never
Used Subset B. This method ensures the experimental and control
groups were balanced regarding prior experience with Chatbots
and their pre-test performance (see Figure 2).

Following their group assignments, students in the experimental
group were sent detailed instructions via email on how to access
and use CodeTutor. In the field study, participants were not man-
dated to adhere to a specific frequency of engagement with Code-
Tutor; instead, they were encouraged to utilize the tool at their own
pace. This approach allowed for a naturalistic observation of how

Evaluating the Effectiveness of LLMs in Introductory Computer Science Education: A Semester-Long Field Study L@S ’24, July 18–20, 2024, Atlanta, Georgia, GA, USA

µmean = 9.44
µmean = 8.68

5

10

15

Control
(n = 25)

Experiment
(n = 25)

group

To
ta

l c
or

re
ct

 a
ns

w
er

s

tStudent(48) = 0.61, p = 0.55, gHedges = 0.17, CI95% [−0.38, 0.71], nobs = 50

Figure 2: Parametric pairwise comparison (ANOVA) reveals
no significant difference in correct answer count of pre-test
in the control and experimental groups.

students integrate LLM-powered educational resources into their
learning processes, without imposing additional constraints that
could influence their study habits or the study’s outcomes.

3.3.3 Student Evaluation. At the end of the semester, students’ fi-
nal grades were used as a primary measure to assess their learning
outcomes and the impact of CodeTutor interventions. While ac-
knowledging that final grades are influenced by various factors,
they offer a standardized measure of overall academic success, en-
abling an assessment of CodeTutor’s role in improving student
learning outcomes.

Final grades were determined by a weighted average that in-
cludes several components for each student: labs (practical mini-
projects), assignments (individual coding tasks, such as array sum-
mation), mid-terms, and a final exam (comprising questions similar
to those in the pre-test). Note that a student’s final grade can surpass
100 if bonus points are awarded throughout the semester. Access to
CodeTutor is restricted during mid-terms and final exams, categoriz-
ing the assessment components into two groups: CodeTutor-Allowed
(labs and assignments) and CodeTutor-Not-Allowed (mid-terms and
final exams). This categorization facilitates an analysis of Code-
Tutor’s impact on student performance by examining potential
dependencies on the tool and the improvement of learning out-
comes in its absence.

3.4 Data Analysis
3.4.1 Quantitative Data Analysis. Weexamined the students’ scores,
interaction behaviors, and attitudes of using CodeTutor through
multiple statistical analyses.

First, we calculated descriptive statistics for all variables, includ-
ing frequency with percentage for categorical variables and means
and standard deviations for continuous variables. To examine the
variation in students’ scores before and after the intervention (i.e.,
the use of CodeTutor), we conducted paired-t tests for both the
experimental and control groups. Multiple regression analyses with
family-wise p-value adjustment were used to examine the effects
of CodeTutor on score improvement, taking into account students’
past experiences using LLM-powered tools and demographic vari-
ables, such as major, gender, and race. We then investigated the

impact of CodeTutor accessibility on academic performance with
ANOVA method. Moreover, we conducted a chi-squared test to ex-
plore the relationship between the quality of students’ content and
prompts and CodeTutor performance. To understand students’ at-
titudes towards CodeTutor, we calculated Spearman’s correlation
matrix for continuous variables, given the characteristics of our
data, which are non-normal and exhibit unequal variance. Fur-
thermore, to examine differences between questions, we used the
Kruskal-Wallis Rank Sum Test (using R package stats [41]) and then
performed post-hoc tests using Dunnett’s test (using the R package
FSA [30]) in cases where significant differences were found. To
investigate the importance of time on students’ attitudes towards
CodeTutor, we introduced a linear mixed effects (LME) model (using
the R package lme4 [4]). We considered statistical significance at
a significance level of 𝑝 < 0.05 for most cases, except in multiple
regression analyses where we used 𝑝 < 0.1 and showed effect sizes
were significant enough to indicate the relationship of variables.

3.4.2 Qualitative Data Analysis. We also analyzed the conversa-
tional history between users. Specifically, we used the General
Inductive Approach [50] to guide our thematic analysis of the con-
versational data. The first author conducted a close reading of the
data to gain a preliminary understanding of the conversational
data and then labeled the text segments to formulate categories,
which served as the basis for constructing low-level codes to cap-
ture specific elements of the user-CodeTutor interactions. Similar
low-level codes were then clustered together to achieve high-level
themes. During the analysis, the research team engaged in ongoing
discussions to refine and clarify emerging themes.

4 RESULTS
In this section, we examined the impact of CodeTutor on student
academic performance (subsection 4.1 to answer RQ1), analyzed
students’ attitudes towards learning with CodeTutor (subsection 4.2
to answer RQ2), and characterized their engagement patterns in
entry-level programming courses (subsection 4.3 to answer RQ3).

4.1 RQ1: Learning Outcomes with CodeTutor
4.1.1 Comparative Analysis of Score Improvements. Overall, stu-
dents in the experimental group exhibited a greater average im-
provement in scores, as illustrated by comparing their pre-test and
final scores to those in the control group. Specifically, the average
increase for the experimental group was 12.50, whereas the control
group showed an average decrease of 3.17 when comparing final
scores to pre-test scores.

We conducted paired t-tests for both the experimental and con-
trol groups to determine if the observed improvements were sta-
tistically significant, starting with the premise that there were no
differences in pre-test scores between these two groups. Our null
hypothesis assumed that the true mean difference between pre-test
and final scores was zero. For the control group, the null hypothesis
could not be rejected, suggesting that the differences between pre-
test and final scores were not statistically significant (𝑡 = -0.879, 𝑝 =

0.394). Conversely, participants in the experimental group demon-
strated significant improvement from the pre-test to final scores,
indicating a statistically significant enhancement in their scores
(𝑡 = -2.847, 𝑝 = 0.009).

L@S ’24, July 18–20, 2024, Atlanta, Georgia, GA, USA Lyu et al.

Furthermore, when examining the improvement in CodeTutor-
Not-Allowed components, the experimental group exhibited an
average increase of 7.33, whereas the control group showed no
significant change. By conducting a paired t-test comparing the
pre-test and final exam scores (during which the use of CodeTutor
was not permitted), it was observed that students in the experi-
mental group demonstrated a statistically significant improvement
(𝑡 = -2.405, 𝑝 = 0.026). This result suggests that students who have
used CodeTutor exhibit more substantial improvement even when
CodeTutor is unavailable.

µmean = 102.29

µmean = 93.40

60

80

100

120

CodeTutor Allowed
(n = 21)

CodeTutor Not Allowed
(n = 21)

group

sc
or

e

tStudent(40) = 2.31, p = 0.03, gHedges = 0.69, CI95% [0.07, 1.30], nobs = 42

Figure 3: Parametric pairwise comparison (ANOVA) reveals a
significantly higher mean score in the “CodeTutor-Allowed”
group compared to the “CodeTutor-Not-Allowed” group.

4.1.2 Effect of CodeTutor Accessibility on Academic Performance.
By constructing the CodeTutor-Allowed and CodeTutor-Not-Allowed,
we determine the correlation between CodeTutor’s accessibility
and student academic performance. Using the ANOVA technique
on the data from the experiment group, Figure 3 reveals that the
mean score for the CodeTutor-Allowed category stands at 102.29,
in contrast to the CodeTutor-Not-Allowed components, which has
a mean score of 93.40. The statistical analysis results show a sig-
nificant difference between the two groups (𝑡 = 2.31, 𝑝 = 0.03),
suggesting that the allowance of CodeTutor correlates with higher
student scores.

4.1.3 Correlation Between Student Demographics and Final Scores in
the Experimental Group. Subsequently, we evaluated demographic
factors to determine whether specific student groups, particularly
those with prior tech experience, experienced greater benefits from
CodeTutor. Table 2 shows the results of multiple regression models,
examining how students’ final scores in the experiment group are
associated with their LLM history, major, gender, and race. Students
who have never used any LLM-powered tools performed a signifi-
cant increase (𝛽 = 18.877, 𝑝 = 0.032) in final score than the students
who used it before.

Moreover, differences in final scores among variousmajorswithin
the experiment group were statistically significant, indicating that
majors play a substantial role in final scores in the experiment
group. Students majoring in data science (𝛽 = 14.532, 𝑝 = 0.073),
mathematics (𝛽 = 17.692, 𝑝 = 0.057), and biology (𝛽 = 16.257, 𝑝 =

0.057) exhibited a significant positive correlation with final scores

Table 2: Multiple regression models explaining respondents’
final scores in experiment group. (Significance level: † 𝑝 < 0.1,
* 𝑝 < 0.05, ** 𝑝 < 0.01, *** 𝑝 < 0.001).

Estimate Std. Error t value Pr(> |t|)
Const 93.683 3.877 24.166 0.000 ***

Prior Experiences with LLM tools
(Reference: Used before)
Never used 18.877 5.054 3.735 0.032 *

Major
(Reference: Computer science)
Data Science 14.532 5.662 2.567 0.073 †

Mathematics 17.692 5.852 3.023 0.057 †

Biology 16.257 5.662 2.871 0.057 †

Economics 1.362 4.799 0.284 0.784
Others -13.004 6.022 -2.160 0.115

Gender
(Reference: Female)
Male 5.917 3.845 1.539 0.223

Race
(Reference: White)
Asian -7.831 3.933 -1.991 0.128
African American or Black 8.099 7.107 1.140 0.322
Others 6.102 5.416 1.127 0.322

compared to those majoring in computer science, suggesting that
these majors achieved higher final scores. In terms of gender, no
significant effects were observed, indicating no difference between
genders in final scores. Additionally, no significant differences were
noted across the races in final scores.

Summary of results of RQ1: Collectively, our findings sug-
gest that students in the experimental group achieved significant
score improvements with CodeTutor. Particularly, those who were
new to CodeTutor achieved even greater improvements, while stu-
dents majoring in data science, mathematics, and biology surpassed
their computer science counterparts. Moreover, students exhibited
higher scores when permitted to use CodeTutor.

4.2 RQ2: Students’ Attitudes towards CodeTutor
4.2.1 Descriptive Analysis. In terms of students’ attitudes towards
CodeTutor (see Figure 1 3 for the specific questions), we found
that a small portion of students (8%) strongly disagreed or dis-
agreed that CodeTutor accurately understood what students intended
to ask, while most (67%) agreed or strongly agreed. In addition, 35%
strongly disagreed or disagreed that CodeTutor helped them think
critically, while 19% agreed or strongly agreed. Furthermore, 13%
students disagreed that CodeTutor improved their understanding of
programming syntax, with a larger proportion of individuals agree-
ing (33%) or strongly agreeing (25%). Nearly half of the students
(42%) agreed or strongly agreed that CodeTutor helped students build
their own understandings, while very few (17%) strongly disagreed
or disagreed. Finally, regarding the potential of CodeTutor to sub-
stitute for a human teaching assistant, 20% of the students strongly
disagreed or disagreed with this notion, while 42% of them agreed
or strongly agreed. Figure 4 shows the distribution of students’
responses across these five questions.

4.2.2 Exploring Relationships in Student Attitudes Toward CodeTu-
tor. Figure 5 reveals key relationships among students’ attitudes

Evaluating the Effectiveness of LLMs in Introductory Computer Science Education: A Semester-Long Field Study L@S ’24, July 18–20, 2024, Atlanta, Georgia, GA, USA

Table 3: Linear Mixed-Effects Model of Student Attitudes over time. (Significance level: † 𝑝 < 0.1, * 𝑝 < 0.05, ** 𝑝 < 0.01, ***
𝑝 < 0.001). Over time, students exhibit a significant decline in their agreement with CodeTutor’s comprehension and replacement
of human teaching assistants.

Comprehension Critical Thinking Syntax Mastery Independent Learning TA Replacement
𝛽 (Std. Error) 𝛽 (Std. Error) 𝛽 (Std. Error) 𝛽 (Std. Error) 𝛽 (Std. Error)

Const 4.700(0.297)*** 2.690(0.247)*** 3.760(0.262)*** 3.044(0.218)*** 3.964(0.330)***
Time -0.114(0.039)** 0.040(0.037) -0.018(0.041) 0.054(0.036) -0.099(0.051)†

2.0%6.0% 25.0% 21.0% 46.0%

6.0% 29.0% 46.0% 15.0% 4.0%

13.0% 29.0% 33.0% 25.0%

2.0% 15.0% 40.0% 37.0% 6.0%

8.0% 12.0% 38.0% 13.0% 29.0%TA Replacement

Independent Learning

Syntax Mastery

Critical Thinking

Comprehension

Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure 4: Participants’ attitudes toward CodeTutor, in terms
of comprehension, critical thinking, syntax mastery, inde-
pendent learning, and TA replacement (see Figure 1 for de-
tailed questions).

Com
pre

he
nsi

on
Criti

cal

Th
ink

ing

Sy
nta

x M
ast

ery

Ind
ep

en
de

nt

Lea
rni

ng

TA
 Re

pla
cem

en
t

Comprehension

Critical Thinking

Syntax Mastery

Independent Learning

TA Replacement

1

0.26 1

0.46 0.22 1

0.13 0.23 0.5 1

0.24 -0.15 0 0 1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 5: A correlation matrix heatmap visualizing the rela-
tionship between different metrics. The blue color indicates
positive correlations, while pink represents negative correla-
tions. Correlation coefficients are displayed inside each cell.

on CodeTutor. The moderate positive correlation between Com-
prehension and Syntax Mastery suggests that proficiency in one is
associated with higher performance in the other. Critical Thinking
is slightly positive with Comprehension and Independent Learning
but slightly negative with TA Replacement. Furthermore, Syntax
Mastery strongly correlates with Independent Learning, indicating
a close relationship between mastering programming syntax and
self-directed learning outcomes. In addition, TA Replacement has
minimal to no significant correlations with other variables, suggest-
ing its effects vary independently of these educational aspects.

To further explore the relationship of different students’ attitudes
among questions, we present the results of multiple comparisons
across the five questions. Specifically, our results show that respon-
dents’ attitudes (𝜒2 = 32.99, 𝑝 < 0.05) significantly differ across
questions. Our post-hoc tests (see Figure 6) further reveal that
students were significantly less in agreement about CodeTutor’s
assistance in fostering critical thinking compared to its ability to

µmedian = 4.00

µmedian = 3.00

µmedian = 4.00

µmedian = 3.00 µmedian = 3.00

pHolm−adj. = 5.34e−07

pHolm−adj. = 0.01

pHolm−adj. = 5.32e−04

pHolm−adj. = 0.03

2

4

6

Comprehension
(n = 48)

Critical Thinking
(n = 48)

Syntax Mastery
(n = 48)

Independent Learning
(n = 48)

TA Replacement
(n = 48)

Question
R

es
ul

t

P
airw

ise test: D
unn

, B
ars show

n: significant

χKruskal−Wallis
2 (4) = 32.99, p = 1.20e−06, εordinal

2 = 0.14, CI95% [0.09, 1.00], nobs = 240

Figure 6: Non-parametric pairwise comparison test (Dunn’s
test): Differences in agreement levels across different ques-
tions. We can see that students predominantly favored Code-
Tutor for its comprehension and syntax support rather than
its ability to foster critical thinking. Additionally, there was
a stronger consensus on CodeTutor’s proficiency in under-
standing queries compared to its effectiveness in enhancing
programming syntax.

understand, help in learning syntax and serving as a replacement
for a teaching assistant. Moreover, our findings suggest that re-
spondents were significantly more in agreement with CodeTutor’s
effectiveness in comprehension than in its ability to improve stu-
dents’ understanding of programming syntax.

We then conducted a linear mixed effects (LME) model to explore
time’s influence on students’ attitudes toward CodeTutor:

𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑖𝑡 = 𝛽0 + 𝑏0𝑖 + (𝛽1 + 𝑏1𝑖)𝑡 + 𝜖𝑖𝑡

where 𝛽0 and 𝛽1 are unknown fixed effect parameters; 𝑏0𝑖 and
𝑏1𝑖 are the unknown student-specific random intercept and slope,
respectively, which are assumed to have a bivariate normal distribu-
tion with mean zero and covariance matrix 𝐷 ; 𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟
is the student response at time 𝑡 ; and 𝜖𝑖𝑡 is the residual error for
student 𝑖 at time 𝑡 , with a normal distribution 𝑁 (0, 𝜎2), which is
assumed to be independent of the random effects. From Table 3, we
can see that students’ attitudes toward CodeTutor show a significant
decrease in Comprehension (𝛽 = -0.114, 𝑝 < 0.01), which indicates
that students disagree with CodeTutor’s understanding accuracy
over time. Moreover, there is a weakly significant decrease in TA
Replacement (𝛽 = -0.099, 𝑝 < 0.1) with increasing time. This shows
a slight tendency for them to consider more human TA help over

L@S ’24, July 18–20, 2024, Atlanta, Georgia, GA, USA Lyu et al.

time. Also, students perform no significant difference over time in
Critical Thinking, Syntax Mastery, and Independent Learning.

Summary of results of RQ2: In summary, students recognize
CodeTutor’s ability to understand their queries and assist with
programming syntax yet question its capacity to promote critical
thinking skills. Additionally, students’ confidence in CodeTutor’s
comprehension abilities decreases over time, with a growing pref-
erence for support from human teaching assistants.

4.3 RQ3: Students’ Engagement with CodeTutor
In total, we documented 82 conversation sessions1 with CodeTu-
tor, encompassing a total of 2,567 messages. In these sessions, 415
unique topics were discussed, averaging 5.06 topics per session and
6.19 messages per topic.

4.3.1 Message Classification & Interaction Patterns. In total, we
collected 2567 conversational messages exchanged between users
and the CodeTutor. Of these, 1288 messages originated from the
users, and CodeTutor responded with 1279 messages.

Table 4 presents categorizations of messages between users and
CodeTutor. Each category has a description and an example to
illustrate the message type. Categories of messages from both users

and CodeTutor include Programming Task inquiries, addressing
specific Python programming challenges; Grammar and Syntax
questions, focusing on Python’s basic grammar or syntax without
necessitating runnable programs; General Questions, which are not
directly related to Python; and Greetings, initiating or finishing
interaction.

From the users’ side , additional categories highlight their
engagement with CodeTutor: Modification Requests for alterations
to previous answers; Help Ineffective indicating issues or errors in
CodeTutor’s provided solutions; Further Information to elaborate
on prior queries; and Debug Requests for assistance in resolving
bugs or errors in code snippets.

CodeTutor’s responses are classified into Corrections, which
address and amend errors in previous responses and Explanations,
providing further details on provided solutions or clarify why cer-
tain requests cannot be fulfilled.

4.3.2 Analysis of PromptQuality & Correlation with Response Effec-
tiveness. To further examine user interaction patterns with CodeTu-
tor and their implications for its educational value, we analyzed the
relationship between prompt quality and response accuracy. This
analysis stems from the premise that detailed and precise prompts
are likely to improve the AI’s understanding of user requirements,
thereby potentially raising the standard of its responses.

To do so, we evaluated a corpus of 1,190 prompts, after removing
all greeting messages, to assess their quality. Our analysis showed
that 37% were deemed good quality. The remaining 63% were identi-
fied as poor quality.We defined “good quality” prompts as providing
sufficient detail for CodeTutor to generate an accurate response. In
contrast, “poor quality” prompts were those that did not meet this
criterion. We categorized the deficiencies in poor quality prompts
into four types: incomplete information (𝑛 = 189, 25%), which lacked

1In our analysis, a conversation session is a continuous exchange of messages between
users and CodeTutor within a specific period, characterized by a coherent topic or
purpose.

specific details necessary for CodeTutor to understand the context;
lack of clear goals (𝑛 = 172, 23%), where the desired outcome was
not explicitly stated; over-reliance on CodeTutor (𝑛 = 362, 48%),
where the assignment questions are directly copied and pasted into
CodeTutor; and poor structural organization (𝑛 = 25, 3%), which
exhibited unclear or confusing request structures. Prompts were
further labeled as “working” if they elicited an appropriate response
from CodeTutor, and “not working” if they failed to do so.

Using a Chi-square test, we investigated whether the prompt
quality and the effectiveness of CodeTutor’s responses were inde-
pendent. Our results showed a significant correlation (𝜒2 = 144.84,
𝑝 < 0.001). In other words, clearer and more detailed prompts are
associated with responses that are more likely to be effective.

Summary of results of RQ3: We characterized the messages
exchanged between users and CodeTutor. We categorize these inter-
actions between users and CodeTutor into inquiries (e.g., program-
ming tasks, syntax questions) and feedback alongside CodeTutor’s
responses (corrections and explanations), illustrating a dynamic
exchange aimed at facilitating learning. We also found that the
clarity and completeness of prompts are significantly correlated
with the quality of responses from CodeTutor.

5 DISCUSSION
Our semester-long field study provided insights into how students
in introductory computer science courses utilized CodeTutor and
its effects on educational outcomes. In short, our results show that
1) students who used CodeTutor had shown significant improve-
ments in scores; 2) while CodeTutor was valued for its assistance in
comprehension and syntax, students expressed concerns about its
capacity to enhance critical thinking skills; 3) skepticism regarding
CodeTutor as an alternative to human teaching assistants grew
over time; 4) CodeTutor was primarily used for various coding
tasks, including syntax comprehension, debugging, and clarifying
fundamental concepts; 5) the effectiveness of CodeTutor responses
was notably higher when prompts were clearer and more detailed.
Building on these findings, we discuss the implications for future
enhancements and research directions in the rest of the section.

5.1 Towards Enhancing Generative AI Literacy
Our research indicates a positive correlation between the use of
Generative AI tools and improved student learning outcomes. How-
ever, 63% of student-generated promptswere deemed unsatisfactory,
indicating a lack of essential skills to fully exploit Generative AI
tools. This finding also suggests the need to promote Generative AI
literacy among students. Here, we define Generative AI literacy as
the ability to effectively interact with AI tools and understand how
to formulate queries and interpret responses. Our findings suggest
that while students can leverage CodeTutor for practical coding
assistance and syntax understanding, there is a gap in using these
tools to enhance critical thinking skills. We suggest educational
programs integrate Generative AI literacy as a core component
of their curriculum, teaching students how to use these tools for
immediate problem-solving and engaging with them to promote
deeper analytical and critical thinking. This could include work-
shops on effective query formulation, sessions on interpreting AI

Evaluating the Effectiveness of LLMs in Introductory Computer Science Education: A Semester-Long Field Study L@S ’24, July 18–20, 2024, Atlanta, Georgia, GA, USA

Table 4: Categorizations of messages, from users’ side and from CodeTutor’s side . [Code Snippet] represents a Python code
segment. The Percentage column represents the ratio of occurrences of each category to the total number of messages. Note that
some categories may only apply to messages sent by either users or CodeTutor, and messages may carry multiple categories.

Category Name Description Example Percentage

Programming Task Any questions or answers related to Python pro-
gramming.

“Write a function that prints the nth(argument) prime
number.”

86.52%

Grammar & Syntax When amessage is related to basic Python grammar
or syntax problems, a runnable program is most
likely unnecessary.

“What does {} do in Python?” 14.26%

General Question When a message is not directly related to Python. “What is ASCII?” 4.29%
Greetings When a message is greeting. “Hello! How can I assist you today?” 0.62%

Help Ineffective When a user message says the previous answer
generated by CodeTutor is wrong or provides error
information.

“This code still fails.” 12.86%

Debug Request When a usermessage asks CodeTutor to fix bugs or
explain what was wrong in code snippets provided
or in previous messages.

“Debug this code. [Code Snippet]” 8.22%

Modification Request When a user requires CodeTutor to change some-
thing on its previous answer.

“Remove comments.” 4.48%

Further Information When a user message provides more context on
their previous input.

“All the input strings will be the same length.” 3.97%

Explanation When CodeTutor explains something in previous
messages or why it cannot complete the current
task from users.

“I’m sorry, but I need more information to provide the
answers for questions 4 and 6.”

28.94%

Correction When CodeTutor corrects content in its previous
answer.

“Apologies for the syntax error. Here is the corrected
version: [Code Snippet]”

13.95%

responses, and exercises designed to challenge students to critically
evaluate the information and solutions offered by AI tools.

We also propose approaches to integrate HCI tools and principles
into LLM-enabled platforms, such as prompt construction templates
providing users with templates or structured forms for crafting
queries. They can guide users in formulating more effective and
precise questions. Templates could include placeholders for essen-
tial details and context, providing the necessary information for the
AI to generate accurate responses to users. Furthermore, integrating
Critical Thinking Prompts might be particularly effective in stimu-
lating in-depth analytical thinking. For example, the interface could
pose follow-up questions encouraging users to assess AI answers’
adequacy critically. Questions such as, “Does this response fully
address your query?” or “What additional information might you
need?” may prompt users to engage in a more thorough evaluation
of the information provided, fostering a habit of critical reflection
and assessment. Another possible approach is Facilitating Collab-
orative Query Building, which leverages the power of collective
intelligence. By designing interfaces that support real-time collabo-
ration among users, individuals can work together to construct and
refine queries. We can also use LLMs to evaluate and refine user
questions instantly as they perform well in prompting [59].

5.2 Turning to the Temporal Dynamics of
LLM-Powered Tutoring Tools

The temporality aspect of using CodeTutor in computer science
education presents a nuanced perspective on their integration and
effectiveness over time. Our analysis reveals a complex relation-
ship between the duration of CodeTutor use and students’ attitudes
towards it. Specifically, our results show that although students ini-
tially find CodeTutor a reliable tool for understanding their queries,

their confidence in its accuracy diminishes with prolonged use.
Additionally, our model uncovers a weakly significant decrease in
students’ preference for CodeTutor as a TA replacement over time.
This trend implies a growing inclination among students to seek
human TA support as they progress in their courses, possibly due to
the nuanced understanding and personalized feedback that human
TAs can offer, which might not be fully replicated by LLMs. How-
ever, our study found no significant temporal change in students’
attitudes toward CodeTutor’s impact on critical thinking, syntax
mastery, and independent learning. This stability suggests that
while students may question CodeTutor’s comprehension abilities
and its adequacy as a TA replacement over time, they still recognize
its utility in facilitating certain aspects of the learning process, such
as mastering syntax and promoting independent study habits.

Collectively, our findings highlight the importance of investigat-
ing the temporal dynamics of student attitudes towards and their
use of LLM-powered tools for learning and shed light on the need
for a balanced approach to integrating LLMs into CS education.
While these tools offer great support in specific areas, their limita-
tions become more apparent with extended use. In other words, it is
important to complement LLMs with human instruction to address
learning objectives, such as critical thinking and problem-solving,
which are crucial for computer science education. Furthermore, we
argue that educators and developers should work collaboratively
to enhance the capabilities of LLM-powered tutoring systems, en-
suring they remain effective and relevant over time.

5.3 Alignments of LLMs for Education
Our observations regarding students’ utilization of CodeTutor pro-
vide insights into their learning approaches and completion of
assignments. The exams that prohibit using CodeTutor reflect stu-
dents’ understanding of programming, as they must rely solely on

L@S ’24, July 18–20, 2024, Atlanta, Georgia, GA, USA Lyu et al.

their internal knowledge. Conversely, assignments and lab tasks
that permit using CodeTutor result in higher scores, indicating that
students may prioritize completion over deep comprehension [17].
While students employ CodeTutor to fulfill homework require-
ments, they may not perceive it as a tool for a comprehensive
understanding of course materials.

Our results show that nearly half of the low-quality prompts clas-
sified as over-reliance were copied and pasted original assignment
questions into CodeTutor. This suggests that students primarily
used CodeTutor as a quick-fix solution, neglecting the opportu-
nity to engage with the underlying question logic and determine
appropriate solutions to the question. As the complexity of assign-
ments increased, students’ perceptions of CodeTutor’s ability to
understand their queries turned more negative. However, students
acknowledge its proficiency in syntax mastery, which reveals a
gap between their expectations and the tool’s capabilities. Complex
questions require students to integrate and apply the knowledge
acquired in class [51], challenging the notion that CodeTutor can
easily break down questions into manageable components. Addi-
tionally, CodeTutor’s limitations, such as its training on a predeter-
mined database and inability to handle custom or complex queries,
suggest that it is important to simplify questions and structure
prompts effectively for optimal results.

Furthermore, we argue that students’ previous experiences with
chatbots, if unrelated to structured learning, such as a simple one-
line request (e.g., “help me write a summary”), may not adequately
prepare them for using CodeTutor effectively in a programming
context, as evidenced by our findings that nearly 70% of student
submissions in our corpus were of poor quality. Students with
limited experience interacting with chatbots might be hesitant to
trust tools like CodeTutor fully, potentially affecting their use and
reliance on its outputs. This lack of familiarity could lead them to
prefer traditional learning approaches, fostering deeper analytical
thinking and minimizing dependency on automated assistance.

Design Implications. Our findings shed light on the future
implementation and enhancement of CodeTutor in programming
courses. The inherent limitations of CodeTutor, which is trained on
a general dataset, may necessitate the creation of custom datasets
tailored to specific class contexts. Through instructors’ reflections
on the quality of students’ assignments, it becomes evident that
while CodeTutor produces impressive results due to its training
on datasets crafted by professional programmers aimed at effi-
ciency, the emphasis in entry-level classes should prioritize human-
readable code over complex solutions. One potential solution is
to leverage GPT models with the Assistant API [31]. This API
enables the development of AI assistants with features, such as
the Code Interpreter [33], which can execute Python code in a
sandboxed environment, and Knowledge Retrieval [34], allowing
users to upload documents to enhance the assistant’s knowledge
base. These features align more closely with the requirements of
a virtual TA in entry-level programming courses. The Code In-
terpreter can enhance the quality of responses containing code
blocks, while Knowledge Retrieval empowers instructors to pro-
vide course-specific information. Meanwhile, providing systematic
instructions to students can enhance their understanding of how
to use the tool effectively while improving its accessibility through

additional instructional features. Additionally, it is crucial to empha-
size the boundaries of using LLM-powered tools, clarifying what is
permissible and the consequences of inappropriate usage.

6 LIMITATIONS AND FUTUREWORK
Our study, while providing valuable insights into the use of LLM-
powered tools in educational settings, has several limitations that
suggest avenues for further research. First, The current study was
conducted on a relatively small scale, limiting the generalizability
of our findings. Therefore, our future work will conduct larger-
scale tests involving more diverse student populations and settings.
Second, regarding the applicability to different levels of coding
courses, our work has focused on beginning levels of CS courses.
Our findings may not directly translate to intermediate or advanced
programming courses. Furthermore, we relied on GPT-3.5 in this
study, which may not always provide accurate or contextually ap-
propriate responses, potentially affecting the quality of tutoring
provided. Lastly, controlling the experimental environment in a
semester-long study, particularly the control group, was challeng-
ing, indicating the need for more experimental designs in future
studies to better understand the factors affecting student learning.

7 CONCLUSION
In this work, we conducted a semester-long between-subjects study
with 50 students to examine the ways in which students use an
LLM-powered virtual teaching assistant (i.e., CodeTutor) in their
introductory-level programming learning. The experimental group
using CodeTutor showed significant improvements in final scores
over the control group, with first-time users of LLM-powered tools
experiencing the most substantial gains. While positive feedback
was received on CodeTutor’s ability to understand queries and aid
in syntax learning, concerns were raised about its effectiveness in
cultivating critical thinking skills. Over time, we observed a shift
towards preferring human assistant support over CodeTutor, de-
spite its utility in completing programming tasks, understanding
syntax, and debugging. Our study also shows the importance of
prompt quality in leveraging CodeTutor’s effectiveness, indicating
that detailed and clear prompts yield more accurate responses. Our
findings point to the critical need for embedding Generative AI
literacy into educational curricula and to promote critical thinking
abilities among students. Looking ahead, our research suggests inte-
grating LLM-powered tools in computer science education requires
more tools, resources, and regulations to help students develop Gen-
erative AI literacy and customize teaching strategies to bridge the
gap between tool capabilities and educational goals. By adjusting
expectations and guiding students on effective tool use, educators
may harness the full potential of Generative AI to complement
traditional teaching methods.

ACKNOWLEDGMENTS
This project is funded by the Studio for Teaching & Learning Inno-
vation Learn, Discover, Innovate Grant, the Faculty Research Grant
from William & Mary, and the Microsoft Accelerate Foundation
Models Research Award. We thank our participants in this study
and our anonymous reviewers for their feedback.

Evaluating the Effectiveness of LLMs in Introductory Computer Science Education: A Semester-Long Field Study L@S ’24, July 18–20, 2024, Atlanta, Georgia, GA, USA

REFERENCES
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-

cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023). https://doi.org/10.48550/arXiv.2303.08774

[2] Toufique Ahmed, Noah Rose Ledesma, and Premkumar Devanbu. 2022. SYN-
SHINE: improved fixing of syntax errors. IEEE Transactions on Software Engineer-
ing 49, 4 (2022), 2169–2181. https://doi.org/10.1109/TSE.2022.3212635

[3] John R Anderson, C Franklin Boyle, and Brian J Reiser. 1985. Intelligent tutoring
systems. Science 228, 4698 (1985), 456–462. https://doi.org/10.1126/science.228.
4698.456

[4] Douglas Bates, Martin Mächler, Ben Bolker, and Steve Walker. 2015. Fitting
Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67, 1
(2015), 1–48. https://doi.org/10.18637/jss.v067.i01

[5] Peter Brusilovsky et al. 1998. Adaptive educational systems on the world-wide-
web: A review of available technologies. In Proceedings of Workshop"WWW-Based
Tutoring" at 4th International Conference on Intelligent Tutoring Systems (ITS’98),
San Antonio, TX.

[6] Peter Brusilovsky, Elmar Schwarz, and Gerhard Weber. 1996. ELM-ART: An intel-
ligent tutoring system on World Wide Web. In Intelligent Tutoring Systems: Third
International Conference, ITS’96 Montréal, Canada, June 12–14, 1996 Proceedings 3.
Springer, 261–269. https://doi.org/10.1007/3-540-61327-7_123

[7] Cory J Butz, Shan Hua, and R Brien Maguire. 2006. A web-based bayesian
intelligent tutoring system for computer programming. Web Intelligence and
Agent Systems: An International Journal 4, 1 (2006), 77–97.

[8] Jan Clusmann, Fiona R Kolbinger, Hannah Sophie Muti, Zunamys I Carrero,
Jan-Niklas Eckardt, Narmin Ghaffari Laleh, Chiara Maria Lavinia Löffler, Sophie-
Caroline Schwarzkopf, Michaela Unger, Gregory P Veldhuizen, et al. 2023. The
future landscape of large language models in medicine. Communications Medicine
3, 1 (2023), 141. https://doi.org/10.1038/s43856-023-00370-1

[9] Albert T Corbett, Kenneth R Koedinger, and John R Anderson. 1997. Intelligent
tutoring systems. In Handbook of human-computer interaction. Elsevier, 849–874.
https://doi.org/10.1016/B978-044481862-1.50103-5

[10] Dorottya Demszky and Jing Liu. 2023. M-Powering Teachers: Natural Language
Processing Powered Feedback Improves 1: 1 Instruction and Student Outcomes.
(2023). https://doi.org/10.1145/3573051.3593379

[11] Paul Denny, Sami Sarsa, Arto Hellas, and Juho Leinonen. 2022. Robosourcing
Educational Resources–Leveraging Large Language Models for Learnersourcing.
arXiv preprint arXiv:2211.04715 (2022). https://doi.org/10.1145/3501385.3543957

[12] Felix Dobslaw and Peter Bergh. 2023. Experiences with Remote Examination
Formats in Light of GPT-4. arXiv preprint arXiv:2305.02198 (2023). https://doi.
org/10.48550/arXiv.2305.02198

[13] Gilan M El Saadawi, Eugene Tseytlin, Elizabeth Legowski, Drazen Jukic, Melissa
Castine, Jeffrey Fine, Robert Gormley, and Rebecca S Crowley. 2008. A natural
language intelligent tutoring system for training pathologists: Implementation
and evaluation. Advances in health sciences education 13 (2008), 709–722. https:
//doi.org/10.1007/s10459-007-9081-3

[14] Mark Elsom-Cook. 1984. Design considerations of an intelligent tutoring system
for programming languages. Ph. D. Dissertation. University of Warwick.

[15] GitHub, Inc. 2024. GitHub Copilot. https://github.com/features/copilot. Accessed:
2024-02-11.

[16] Arthur C Graesser, Xiangen Hu, and Robert Sottilare. 2018. Intelligent tutoring
systems. In International handbook of the learning sciences. Routledge, 246–255.

[17] Morgan Gustafson. 2022. The Effect of Homework Completion on Students’
Academic Performance. Dissertations, Theses, and Projects. https://red.mnstate.
edu/thesis/662 662.

[18] Yann Hicke, Anmol Agarwal, Qianou Ma, and Paul Denny. 2023. ChaTA: Towards
an Intelligent Question-Answer Teaching Assistant using Open-Source LLMs.
arXiv preprint arXiv:2311.02775 (2023). https://doi.org/10.48550/arXiv.2311.02775

[19] Danial Hooshyar, Rodina Binti Ahmad, Moslem Yousefi, Farrah Dina Yusop, and
S-J Horng. 2015. A flowchart-based intelligent tutoring system for improving
problem-solving skills of novice programmers. Journal of computer assisted
learning 31, 4 (2015), 345–361. https://doi.org/10.1111/jcal.12099

[20] Sajed Jalil, Suzzana Rafi, Thomas D LaToza, Kevin Moran, and Wing Lam. 2023.
Chatgpt and software testing education: Promises & perils. In 2023 IEEE Inter-
national Conference on Software Testing, Verification and Validation Workshops
(ICSTW). IEEE, 4130–4137. https://doi.org/10.1109/ICSTW58534.2023.00078

[21] Enkelejda Kasneci, Kathrin Seßler, Stefan Küchemann, Maria Bannert, Daryna
Dementieva, Frank Fischer, Urs Gasser, Georg Groh, Stephan Günnemann, Eyke
Hüllermeier, et al. 2023. ChatGPT for good? On opportunities and challenges
of large language models for education. Learning and individual differences 103
(2023), 102274. https://doi.org/10.1016/j.lindif.2023.102274

[22] James A Kulik and JD Fletcher. 2016. Effectiveness of intelligent tutoring systems:
a meta-analytic review. Review of educational research 86, 1 (2016), 42–78. https:
//doi.org/10.3102/0034654315581420

[23] Harsh Kumar, Ilya Musabirov, Mohi Reza, Jiakai Shi, Anastasia Kuzminykh,
Joseph Jay Williams, and Michael Liut. 2023. Impact of Guidance and Interaction

Strategies for LLM Use on Learner Performance and Perception. arXiv preprint
arXiv:2310.13712 (2023). https://doi.org/10.48550/arXiv.2310.13712

[24] Juho Leinonen, Paul Denny, Stephen MacNeil, Sami Sarsa, Seth Bernstein, Joanne
Kim, Andrew Tran, and Arto Hellas. 2023. Comparing code explanations created
by students and large language models. arXiv preprint arXiv:2304.03938 (2023).
https://doi.org/10.48550/arXiv.2304.03938

[25] Juho Leinonen, Arto Hellas, Sami Sarsa, Brent Reeves, Paul Denny, James Prather,
and Brett A Becker. 2023. Using large language models to enhance programming
error messages. In Proceedings of the 54th ACM Technical Symposium on Computer
Science Education V. 1. 563–569. https://doi.org/10.1145/3545945.3569770

[26] Mark Liffiton, Brad E Sheese, Jaromir Savelka, and Paul Denny. [n. d.]. Codehelp:
Using large language models with guardrails for scalable support in programming
classes. ([n. d.]), 1–11. https://doi.org/10.1145/3631802.3631830

[27] Atharva Mehta, Nipun Gupta, Dhruv Kumar, Pankaj Jalote, et al. 2023. Can
ChatGPT Play the Role of a Teaching Assistant in an Introductory Programming
Course? arXiv preprint arXiv:2312.07343 (2023). https://doi.org/10.48550/arXiv.
2312.07343

[28] Jesse GMeyer, Ryan J Urbanowicz, Patrick CNMartin, Karen O’Connor, Ruowang
Li, Pei-Chen Peng, Tiffani J Bright, Nicholas Tatonetti, Kyoung Jae Won, Gra-
ciela Gonzalez-Hernandez, et al. 2023. ChatGPT and large language models
in academia: opportunities and challenges. BioData Mining 16, 1 (2023), 20.
https://doi.org/10.1186/s13040-023-00339-9

[29] Hyacinth S Nwana. 1990. Intelligent tutoring systems: an overview. Artificial
Intelligence Review 4, 4 (1990), 251–277. https://doi.org/10.1007/BF00168958

[30] Derek H. Ogle, Jason C. Doll, A. Powell Wheeler, and Alexis Dinno. 2023. FSA:
Simple Fisheries Stock Assessment Methods. https://CRAN.R-project.org/package=
FSA R package version 0.9.4.

[31] OpenAI. 2024. Assistants Overview - OpenAI API. https://platform.openai.com/
docs/assistants/overview. Accessed: 2024-02-11.

[32] OpenAI. 2024. ChatGPT. https://openai.com/chatgpt. Accessed: 2024-02-11.
[33] OpenAI. 2024. Code Interpreter. https://platform.openai.com/docs/assistants/

tools/code-interpreter. Accessed: 2024-02-11.
[34] OpenAI. 2024. Knowledge Retrieval. https://platform.openai.com/docs/assistants/

tools/knowledge-retrieval. Accessed: 2024-02-11.
[35] Maciej Pankiewicz and Ryan S Baker. 2023. Large Language Models (GPT) for au-

tomating feedback on programming assignments. arXiv preprint arXiv:2307.00150
(2023). https://doi.org/10.48550/arXiv.2307.00150

[36] Mike Perkins, Jasper Roe, Darius Postma, JamesMcGaughran, and DonHickerson.
2023. Detection of GPT-4 generated text in higher education: Combining academic
judgement and software to identify generative AI tool misuse. Journal of Academic
Ethics (2023), 1–25. https://doi.org/10.1007/s10805-023-09492-6

[37] Tung Phung, José Cambronero, Sumit Gulwani, Tobias Kohn, Rupak Majumdar,
Adish Singla, and Gustavo Soares. 2023. Generating High-Precision Feedback
for Programming Syntax Errors using Large Language Models. arXiv preprint
arXiv:2302.04662 (2023). https://doi.org/10.48550/arXiv.2302.04662

[38] Tung Phung, Victor-Alexandru Pădurean, José Cambronero, Sumit Gulwani,
Tobias Kohn, Rupak Majumdar, Adish Singla, and Gustavo Soares. 2023. Gen-
erative AI for Programming Education: Benchmarking ChatGPT, GPT-4, and
Human Tutors. International Journal of Management 21, 2 (2023), 100790.
https://doi.org/10.48550/arXiv.2306.17156

[39] Russell A Poldrack, Thomas Lu, and Gašper Beguš. 2023. AI-assisted coding:
Experiments with GPT-4. arXiv preprint arXiv:2304.13187 (2023). https://doi.org/
10.48550/arXiv.2304.13187

[40] James Prather, Paul Denny, Juho Leinonen, Brett A Becker, Ibrahim Albluwi,
Michelle Craig, Hieke Keuning, Natalie Kiesler, Tobias Kohn, Andrew Luxton-
Reilly, et al. 2023. The robots are here: Navigating the generative ai revolution in
computing education. arXiv preprint arXiv:2310.00658 (2023). https://doi.org/10.
1145/3623762.3633499

[41] R Core Team. 2022. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.
org/

[42] Steven Ritter, John R Anderson, Kenneth R Koedinger, and Albert Corbett. 2007.
Cognitive Tutor: Applied research in mathematics education. Psychonomic bul-
letin & review 14 (2007), 249–255. https://doi.org/10.3758/BF03194060

[43] Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Automatic
generation of programming exercises and code explanations using large language
models. In Proceedings of the 2022 ACM Conference on International Computing
Education Research-Volume 1. 27–43.

[44] Jaromir Savelka, Arav Agarwal, Christopher Bogart, and Majd Sakr. 2023. Large
language models (gpt) struggle to answer multiple-choice questions about code.
arXiv preprint arXiv:2303.08033 (2023). https://doi.org/10.48550/arXiv.2303.08033

[45] Brad Sheese, Mark Liffiton, Jaromir Savelka, and Paul Denny. 2023. Patterns of
Student Help-Seeking When Using a Large Language Model-Powered Program-
ming Assistant. arXiv preprint arXiv:2310.16984 (2023). https://doi.org/10.1145/
3636243.3636249

[46] Derek Sleeman and John Seely Brown. 1982. Intelligent tutoring systems. London:
Academic Press.

https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.1109/TSE.2022.3212635
https://doi.org/10.1126/science.228.4698.456
https://doi.org/10.1126/science.228.4698.456
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1007/3-540-61327-7_123
https://doi.org/10.1038/s43856-023-00370-1
https://doi.org/10.1016/B978-044481862-1.50103-5
https://doi.org/10.1145/3573051.3593379
https://doi.org/10.1145/3501385.3543957
https://doi.org/10.48550/arXiv.2305.02198
https://doi.org/10.48550/arXiv.2305.02198
https://doi.org/10.1007/s10459-007-9081-3
https://doi.org/10.1007/s10459-007-9081-3
https://github.com/features/copilot
https://red.mnstate.edu/thesis/662
https://red.mnstate.edu/thesis/662
https://doi.org/10.48550/arXiv.2311.02775
https://doi.org/10.1111/jcal.12099
https://doi.org/10.1109/ICSTW58534.2023.00078
https://doi.org/10.1016/j.lindif.2023.102274
https://doi.org/10.3102/0034654315581420
https://doi.org/10.3102/0034654315581420
https://doi.org/10.48550/arXiv.2310.13712
https://doi.org/10.48550/arXiv.2304.03938
https://doi.org/10.1145/3545945.3569770
https://doi.org/10.1145/3631802.3631830
https://doi.org/10.48550/arXiv.2312.07343
https://doi.org/10.48550/arXiv.2312.07343
https://doi.org/10.1186/s13040-023-00339-9
https://doi.org/10.1007/BF00168958
https://CRAN.R-project.org/package=FSA
https://CRAN.R-project.org/package=FSA
https://platform.openai.com/docs/assistants/overview
https://platform.openai.com/docs/assistants/overview
https://openai.com/chatgpt
https://platform.openai.com/docs/assistants/tools/code-interpreter
https://platform.openai.com/docs/assistants/tools/code-interpreter
https://platform.openai.com/docs/assistants/tools/knowledge-retrieval
https://platform.openai.com/docs/assistants/tools/knowledge-retrieval
https://doi.org/10.48550/arXiv.2307.00150
https://doi.org/10.1007/s10805-023-09492-6
https://doi.org/10.48550/arXiv.2302.04662
https://doi.org/10.48550/arXiv.2306.17156
https://doi.org/10.48550/arXiv.2304.13187
https://doi.org/10.48550/arXiv.2304.13187
https://doi.org/10.1145/3623762.3633499
https://doi.org/10.1145/3623762.3633499
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.3758/BF03194060
https://doi.org/10.48550/arXiv.2303.08033
https://doi.org/10.1145/3636243.3636249
https://doi.org/10.1145/3636243.3636249

L@S ’24, July 18–20, 2024, Atlanta, Georgia, GA, USA Lyu et al.

[47] Robert A Sottilare, KeithWBrawner, Benjamin S Goldberg, andHeather KHolden.
2012. The generalized intelligent framework for tutoring (GIFT). Orlando, FL:
US Army Research Laboratory–Human Research & Engineering Directorate (ARL-
HRED) (2012).

[48] Lichao Sun, Yue Huang, Haoran Wang, Siyuan Wu, Qihui Zhang, Chujie Gao,
Yixin Huang, Wenhan Lyu, Yixuan Zhang, Xiner Li, et al. 2024. Trustllm: Trust-
worthiness in large language models. arXiv preprint arXiv:2401.05561 (2024).
https://doi.org/10.48550/arXiv.2401.05561

[49] Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan, Laura
Gutierrez, Ting Fang Tan, and Daniel Shu Wei Ting. 2023. Large language models
in medicine. Nature medicine 29, 8 (2023), 1930–1940. https://doi.org/10.1038/
s41591-023-02448-8

[50] David R Thomas. 2006. A general inductive approach for analyzing qualitative
evaluation data. American journal of evaluation 27, 2 (2006), 237–246. https:
//doi.org/10.1177/1098214005283748

[51] Ulrich Trautwein and Olaf Köller. 2003. The relationship between homework and
achievement—still much of a mystery. Educational psychology review 15 (2003),
115–145. https://doi.org/10.1023/A:1023460414243

[52] Kurt VanLehn. 2011. The relative effectiveness of human tutoring, intelligent
tutoring systems, and other tutoring systems. Educational psychologist 46, 4
(2011), 197–221. https://doi.org/10.1080/00461520.2011.611369

[53] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian
Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022. Emergent abilities of large language models. arXiv preprint arXiv:2206.07682
(2022). https://doi.org/10.48550/arXiv.2206.07682

[54] Junchao Wu, Shu Yang, Runzhe Zhan, Yulin Yuan, Derek F Wong, and Lidia S
Chao. 2023. A survey on llm-gernerated text detection: Necessity, methods, and
future directions. arXiv preprint arXiv:2310.14724 (2023). https://doi.org/10.
48550/arXiv.2310.14724

[55] Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski, Mark Dredze, Sebas-
tian Gehrmann, Prabhanjan Kambadur, David Rosenberg, and Gideon Mann.
2023. Bloomberggpt: A large language model for finance. arXiv preprint
arXiv:2303.17564 (2023). https://doi.org/10.48550/arXiv.2303.17564

[56] JD Zamfirescu-Pereira, Richmond Y Wong, Bjoern Hartmann, and Qian Yang.
2023. Why Johnny can’t prompt: how non-AI experts try (and fail) to design
LLM prompts. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems. 1–21. https://doi.org/10.1145/3544548.3581388

[57] Jiawei Zhou, Yixuan Zhang, Qianni Luo, Andrea G Parker, and Munmun
De Choudhury. 2023. Synthetic lies: Understanding ai-generated misinforma-
tion and evaluating algorithmic and human solutions. In Proceedings of the
2023 CHI Conference on Human Factors in Computing Systems. 1–20. https:
//doi.org/10.1145/3544548.3581318

[58] Kyrie Zhixuan Zhou, Zachary Kilhoffer, Madelyn Rose Sanfilippo, Ted Under-
wood, Ece Gumusel, Mengyi Wei, Abhinav Choudhry, and Jinjun Xiong. 2024.
"The teachers are confused as well": A Multiple-Stakeholder Ethics Discussion on
Large Language Models in Computing Education. arXiv preprint arXiv:2401.12453
(2024). https://doi.org/10.48550/arXiv.2401.12453

[59] Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis,
Harris Chan, and Jimmy Ba. 2022. Large language models are human-level
prompt engineers. arXiv preprint arXiv:2211.01910 (2022). https://doi.org/10.
48550/arXiv.2211.01910

https://doi.org/10.48550/arXiv.2401.05561
https://doi.org/10.1038/s41591-023-02448-8
https://doi.org/10.1038/s41591-023-02448-8
https://doi.org/10.1177/1098214005283748
https://doi.org/10.1177/1098214005283748
https://doi.org/10.1023/A:1023460414243
https://doi.org/10.1080/00461520.2011.611369
https://doi.org/10.48550/arXiv.2206.07682
https://doi.org/10.48550/arXiv.2310.14724
https://doi.org/10.48550/arXiv.2310.14724
https://doi.org/10.48550/arXiv.2303.17564
https://doi.org/10.1145/3544548.3581388
https://doi.org/10.1145/3544548.3581318
https://doi.org/10.1145/3544548.3581318
https://doi.org/10.48550/arXiv.2401.12453
https://doi.org/10.48550/arXiv.2211.01910
https://doi.org/10.48550/arXiv.2211.01910

	Abstract
	1 Introduction
	2 Related Work
	2.1 Intelligent Tutoring Systems
	2.2 Large Language Models in CS Education

	3 Method
	3.1 Design of CodeTutor
	3.2 Participants
	3.3 Study Procedure & Data Collection
	3.4 Data Analysis

	4 Results
	4.1 RQ1: Learning Outcomes with CodeTutor
	4.2 RQ2: Students' Attitudes towards CodeTutor
	4.3 RQ3: Students' Engagement with CodeTutor

	5 Discussion
	5.1 Towards Enhancing Generative AI Literacy
	5.2 Turning to the Temporal Dynamics of LLM-Powered Tutoring Tools
	5.3 Alignments of LLMs for Education

	6 Limitations and Future Work
	7 Conclusion
	Acknowledgments
	References

